Oceanography Chapter 16: Marine Communities

Community: comprised of the many populations of organisms that interact at a particular location.

Population: group of organisms of the same species that occupy a specific area.

Communities/Populations depend on the biological and physical characteristics of the living space.

Largest community (Deep Ocean) is the most sparsely populated.

Small community - a rock

Microscope communities also exist.

Organisms Within Communities
Habitat – its physical address or location
Niche – occupation within the habitat
Range of species – biodiversity

Influence of Physical and Biological Factors
› determine the location and composition of a community
› Physical Factors: T, P, and Salinity
› Biological Factors: crowding, predation, grazing, parasitism, shading from light, generation of waste substances, competition for limited oxygen

Stenothermal – narrow temperature range
Eurythermal – can function in a wide range

Stenohaline – require stable haline environment
Euryhaline – can withstand a wide range.

Combination of effects may prove lethal

Ecology: study of the balance between physical and biological factors and how they relate to community success and longevity.

Competition
› Can be between the same population or different ones
› Subtle changes in factors can swing favor to one organism over another (Barnacles, Limpets)
› Same species – larger, stronger, getting food, mating, avoiding enemies

Growth Rate and Carrying Capacity
› With no competition – growth rates are exponential
› Most have environmental resistance – some sort of limiting factor.
› Carrying Capacity- number of organisms in an environment
Distribution of Organisms
Population Density: number of individuals per unit area (or volume).

Random Distribution – the position of one organism in a community in no way influences the position of other organisms
- Also implies conditions are uniform.
 Figure 16.5

Clumped Distribution – most common
- Where conditions are optimal for physical protection, nutrient concentration, initial dispersal, social interaction

Uniform Distribution – rarest
- Eels come close

Change in Marine Communities

Communities can alter their own environment
Coral Reefs ⇒ currents, temp, dissolved gases

Natural catastrophes can alter communities.

Human activities can.

Climax Community: stable, long-established community

Succession: reestablishment of a climax community

Examples of Marine Communities

1. **Rocky Intertidal Communities (Figure 16.6)**
 - Band between the highest high tide and lowest low tide marks
 - Wave shock – the powerful force of crashing wave.
 - Can be extreme (with rise/fill of the tides)
 (Critters are adapted) Exposure Figure 16.7

 Motile vs. Sessile
 Crabs Clams

 Desiccation occurs – drying

2. **Seaweed Communities (Figure 16.8)**
 - Urchins like them
 - Others will eat urchins

3. **Sand Beach/Cobble Beach**
 - Actually high energy (Sand is tough)
 - Cobble – higher energy
 - Basalt – hot!
 - Sand beach critters Figure 16.9
4. Salt Marshes /Estuaries
 ➢ Brackish to Saltwater
 ➢ Estuary – broad, shallow river mouth
 ➢ Critters are euryhaline
 ➢ Lots of juveniles

5. Coral Reefs
 ➢ Medium to High energy environment, but stable
 ➢ Warm water
 ➢ 50% biomass
 Figure 16.12

6. Open Ocean
 ➢ 83% Biomass, uppermost 200m (660 feet)
 ➢ Less than 1% us found below 3000m (10k ft)
 (Photosynthesis)
 ➢ Deep Sea Scattering layer (DSL)
 1. Migrate up/down with light Figure 16.13
 2. Found with Echo sounding
 3. Found in all ocean areas but the Artic
 ➢ Deeper water is “patchy”
 (And Bizarre - Gulper Eels (Figure 16.15)
 - Angler Fish (Figure 16.16)

7. Deep Sea Floor
 ➢ slow metabolism: cold water
 ➢ Live long lives
 ➢ Very specialized for their environment
 Tripod Fish – 16.17
 Other Bizarres – 16.18

8. Deep Rock Communities
 ➢ Extremophiles – stand very high temperatures.
 ➢ Chemosynthethic (below Photic Zone)
 1. Use Fe, Ma, SO₄ to generate methane from CO₂
 (than build sugar molecules = Energy)
 ➢ Some scientist think – 30 % biomass
 ➢ Slimes – Subsurface Lithoautotrophic Microbial Ecosystems

9. Hydro thermal Vent and Cold Seep Communities
 ➢ Near MOR
 ➢ Chemosynthetic, using H₂S, CO₂, O₂ to make food
 ➢ Huge ecosystem, from bacteria to higher level heterotrophs
 ➢ Crabs, clams, sea anemones, shrimps
 ➢ “Tube Worms” – Pogonophorans
 ➢ Critters shelter bacteria
 ➢ Cold Seeps – hypersaline cold water rich in nutrients
 ➢ Base of chemo synthetic bacteria
10. Whale Fall Communities
 ➢ May be the recruiters

Symbiosis: Co-occurrence - dependance
1. Mutualistic – both benefit
2. Commensalism – one benefits
3. Parasitism – one benefits, but harms the other