Atmosphere

- Insulator—maintains our T balance (500 degrees F, T changes without it)
- 2. Shield—from meteors
- 3. Ocean of air—dynamic, distributes heat

Look at Mr. Moon:

 Temps—light side- 400 degrees F dark - 250 degrees F

2. No sound wave travel—no molecules of air

Characteristics of Atmosphere—extends 480 Km up

(300 miles up) Density stratified like the earth itself

(97% air is concentrated in the first 25 Km)

>exerts atmospheric pressure=1034 g/cc, 14.0l b/square inch

Composition of the Atmosphere

Permanent		VS.		(PPM)
N ₂	78.08%	H ₂ O	0% to 4%	
O ₂	20.95%	Cu ₂	0.0037%	368
Ar	0.93%	CH ₄	0.00017%	1.7
Ne	0.0018%	N ₂ O	0.00003%	0.3
Не	0.0005%	О3	0.000004%	0.04
H ₂	0.00006%	crap	0.000001%	0.01 - 0.05
Xe	0.000009%	CFCs	0.0000002%	0.0002

Nitrogen—supports plant growth O₂—breathe & burn (oxidation) food Figure 4.1

Carbon Dioxide: absorbs heat from the Earth

>Part of the Carbon Cycle

>Figure 4.2: Light+Water+CO₂---->Carbohydrate+O₂

>Plants use it in Photosynthesis (convert it to Energy (sugar))

Ozone (O₃): Forms in the upper atmosphere, O₂ is split and then rejoins as O₃

>Blocks uv radiation

>Pollutant at low elevation

>CFCs break it down (Freon)

Other Stuff: Water, Liquids and Solids

>Water vapor is also an important insulator. Water has a high heat capacity, and can exist as a solid, liquid or gas on Earth.

>dust, smoke, pollen and spores, ash, bacteria, and salts

Vertical Layers of the Atmosphere

>Less dense as you go up

From the bottom (surface) upward:

Troposphere: closest to the surface

- ◆Tropo-to turn (mixing zone)
- ♦8-16 km, varies seasonally
- ◆Thickest at the equator, thinnest at the poles
- ♦All particulates are here
- ◆Temperature decreases according to the Environmental Lapse Rate (or Normal Lapse Rate), which is 6.5°C/1000 m or 3.6°F/ 1000 feet

Tropopause: the altitude at which temperature ceases to drop with increased altitude.

◆Separates Troposphere from Stratosphere

Stratosphere

- ◆Lower part has a relatively constant temperature (about -57°C or -70°F) (to an altitude of 32 km (20 miles)
- ♦Ozone Layer: absorbs UV radiation and releases heat, which increases the temperatures in the upper Stratosphere

Stratopause: about 50 km or 30 miles up

◆Temperatures are near that of the surface

Mesophere: Temperature drops with increasing altitude

Mesopause: separates Mesosphere from Thermosphere

Thermosphere (or lonosphere): Temperature increases until you reach 1100°C (or 2000°F)

- ♦lonization of molecules by UV, X-rays and Gamma radiation
- ♦Result: the auroras

In these upper layers, the air is so thin that little heat can be transferred anywhere.

Controls of Temperature on the Surface of the Earth

- 1) Latitude: the most important (Table 4.2)
 - ◆There is one exception. Why?
- 2) Land-Water Distribution
 - ♦The specific heat for water is higher than that for land
 - ◆Transferability is greater in water: mixing

Example: Seattle: 64°F in July, 40°F in January,

Minneapolis: 70°F in July, 4°F in January

- 3) Ocean Currents: Figures 4.4 and 4.5
 - ◆Clockwise in the northern hemisphere
 - ♦warm water goes to northern latitudes (like the Gulf Stream) Examples:
 - ♦Colder ocean currents keep CA a little cooler and drier
- 4) Altitude
 - ◆Temperatures decrease with altitude Example: Quito, Ecuador (55°F average annual T) Why?
- 5) Landform Barriers
 - ♦Himalayas keep cold winter Asiatic air out of India
 - ♦North facing and South Facing Slopes

The Role of Water (Figure 4.6: The States of Water)

Examples:

- 6) Human Activities
 - ◆Building cities-urban heat island
 - ◆Desertification

THE ROLE C	i vvatci (i igui	C 4.0. THE OR	ates of water)	
		Sublimation		
	Freezing		Condensation	
	((
SOLID	(80 cal/g)	LIQUID	(590 cal/g)	GAS
	>		>	
	Melting		Evaporation	
		Sublimation		
\ □	Energy is adde	d (endothermi	io)	
			,	
< □	nergy is release	sea (exotnem	IIC)	

Effects of the Atmosphere on Solar Radiation

The amount of radiation is dependant upon:

- 1) Latitude
- 2) Time of Day
- (Items 1-3 are all related to the sun angle)
- 3) Time of Year
- 4) Transparency of the Atmosphere

Summary of Figure 4.7:

- 1) 26% of the incoming energy is reflected directly back to space by clouds and the ground.
- 2) 8% is scattered by minute atmospheric particles and returned to space as diffuse radiation

Why is the sky blue?

Why are sunsets red?

- 3) 20% reaches the Earth's surface as diffuse radiation after being scattered.
- 4) 27% reaches the Earth's surface as direct radiation.
- 5) 19% is absorbed by the ozone layer and by water vapor in the clouds of the atmosphere.

In other words:

47% makes it here

19% gets stuck in the atmosphere

34% returned to space

(All percentages represent an oversimplification. Everything can vary.)

Heating the Atmosphere

Processes of Heat Energy Transfer

- 1) Radiation: the process by which EM is transferred from the sun.
 - ◆Generally, warmer objects give off more E in smaller wavelengths
 - ♦So, the Sun emits Short Wave radiation and the Earth emits Long Wave radiation, which heats up the atmosphere from the ground up.

Examples of the Short Wave/Long Wave Relationship:

- 2) Conduction: heat is transferred from one part of an object to another or from two touching objects.
 - ♦Heat flow form warmer objects to the colder parts Examples:
 - ◆Conduction typically occurs at the boundary between the surface and the atmosphere
 - ♦Air is a good insulator, not a good conductor
- 3) Convection: the vertical transfer of heat through the atmosphere
 - ◆Convection Currents: the boiling pot
- 4) Advection: Horizontal heat transfer
 - ♦Agents: wind and ocean currents
 - ♦Generally from the equator to the poles, very important for the heat distribution of the Earth
- 5) Latent Heat of Condensation: Helps warm the atmosphere and is a source of energy for storms (Exothermic)
 - ♦Latent Heat of Evaporation: Energy is added and helps cool the atmosphere (Endothermic)

The Heat Energy Budget

Now what happens to the 47% that gets here?

- 1) 14% is emitted as Long Wave Radiation (6% loss, 8% recapture by the atmosphere)
- 2) 10% Net transfer back to atmosphere via conduction or convection
- 3) 23% returns to the atmosphere through the release of the Latent Heat of Condensation

Thus, the overall temperature of the Earth's Surface is in a state of dynamic equilibrium.

Input?

Input=Output

Output?

When the Earth's Dynamic Equilibrium is disturbed, GLOBAL CLIMATE change:

- 1) Greenhouse Effect: the trapping of radiation by gases in the atmosphere
- 2) Meteor Impact: bouncing of radiation off of the atmosphere

Figure 4.9: Latitudinal Variation in the Energy Budget

- ♦Surplus at low latitudes
- ◆Deficit at high latitudes
- ♦Only at 38 degrees latitude is it balanced
- ◆The Earth's oceans and atmosphere keep everything in balance

Air Temperature

Heat and Temperature Review

- ♦Heat is a form of energy, the total kinetic energy of all atoms in a substance
- ◆Temperature is the average kinetic energy of the individual atoms of a substance

Difference: A match has a high temperature, the ocean has a high heat capacity

Scales Freezing Point Boiling Point Absolute Zero

Fahrenheit

Celsius

Kelvin

Short Term Variations in Temperature (Figure 4.11)

Example: Why does it get hotter later in the afternoon, after the maximum noon sun angle?

Factors Influencing Daily Temperature:

- 1) Cloud Cover
- 2) Differential Heating of Land (continental) and Water (maritime)
- 3) Reflection
 - ♦Albedo-capacity of a surface to reflect the sun's energy
 - >High albedos:
 - >Low albedos:
 - ♦Angle of the sun can change the reflectivity of a surface
- 4) Horizontal Air Movement
 - ♦From oceans over the continent and back (Land/Sea Breezes)

Vertical Distribution of Temperature

- 1) Normal Lapse Rates: can vary according to the gradient of temperature\
 (Figure 4.14)
- 2) Temperature Inversions: Occurs when temperature increases with altitude for a few thousand meters
 - ◆Common around the latitudes of 30-35 degrees
 - ◆Especially in LA: serves as a trap for smog
- 3) Surface Inversions: Frost and Fog
 - ♦cold dense air flows down a valley
 - ♦ farmers have to improvise: fans, smudge pots, straw

Temperature Distribution at Earth's Surface Isotherms: equal lines of temperature

Figures 4.19-4.20

Temperature maximums and minimums occur about 30 day after the solstices. Why? The Annual Lag of Temperature (similar to the daily cycle)

Annual March of Temperature: Figure 4.21

Weather and Climate

Weather: refers to the condition of atmospheric elements at a given time for a specific area.

◆Specialist: Meteorologist

Climate: average of the weather conditions over time

◆Specialist: Climatologist

The Five Basic Elements of the atmosphere serve as the "ingredients" of weather and climate:

- 1) Solar Energy (insolation)
- 2) Temperature
- 3) Pressure
- 4) Wind
- 5) Precipitation