Matrices: Cramer's Rule

Cramer's Rule is a method of solving systems of equations using determinants.

The following is Cramer's Rule with two variables:

Consider the system of equations $\left\{\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array}\right.$.

Let $D=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$,
determinant of the coefficient matrix
$D_{x}=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|$,
determinant of the matrix formed by replacing the x column with the constants

$$
D_{y}=\left|\begin{array}{ll}
a_{1} & \boldsymbol{c}_{1} \\
a_{2} & c_{2}
\end{array}\right|
$$

determinant of the matrix formed by replacing the \boldsymbol{y} column with the constants

If $D \neq 0$, then $x=\frac{D_{x}}{D}$ and $y=\frac{D_{y}}{D}$; the solution to the system of equations is the ordered pair $\left(\frac{D_{x}}{D}, \frac{D_{y}}{D}\right)$.
(Note: If $D=0$, Cramer's Rule does not apply—use a different method to solve the system of equations).

Ex. Solve the system of equations using Cramer's Rule, if applicable. $\left\{\begin{array}{l}2 x+5 y=11 \\ -3 x+y=-4\end{array}\right.$
Find the value of each determinant D, D_{x}, and D_{y}.

$$
\begin{aligned}
& D=\left|\begin{array}{cc}
2 & 5 \\
-3 & 1
\end{array}\right|=(2)(1)-(5)(-3)-2+15=17 \\
& D_{x}=\left|\begin{array}{cc}
11 & 5 \\
-4 & 1
\end{array}\right|=(11)(1)-(5)(-4)=11+20=31 \\
& D_{y}=\left|\begin{array}{cc}
2 & 11 \\
-3 & -4
\end{array}\right|=(2)(-4)-(11)(-3)=-8+33=25
\end{aligned}
$$

Thus, $x=\frac{D_{x}}{D}=\frac{31}{17}$ and $y=\frac{D_{y}}{D}=\frac{25}{17}$. The solution to the system of equations is the ordered pair $\left(\frac{31}{17}, \frac{25}{17}\right)$.

Cramer's Rule can also be extended to solve systems of linear equations in three variables:
Consider the system of equations $\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right.$
Let $D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$,
$D_{x}=\left|\begin{array}{lll}\boldsymbol{d}_{\mathbf{1}} & b_{1} & c_{1} \\ \boldsymbol{d}_{\mathbf{2}} & b_{2} & c_{2} \\ \boldsymbol{d}_{\mathbf{3}} & b_{3} & c_{3}\end{array}\right|$,
$D_{y}=\left|\begin{array}{lll}a_{1} & \boldsymbol{d}_{\mathbf{1}} & c_{1} \\ a_{2} & \boldsymbol{d}_{\mathbf{2}} & c_{2} \\ a_{3} & \boldsymbol{d}_{\mathbf{3}} & c_{3}\end{array}\right|$,
$D_{z}=\left|\begin{array}{lll}a_{1} & b_{1} & \boldsymbol{d}_{\mathbf{1}} \\ a_{2} & b_{2} & \boldsymbol{d}_{\mathbf{2}} \\ a_{3} & b_{3} & \boldsymbol{d}_{\mathbf{3}}\end{array}\right|$
determinant of the coefficient matrix

> determinant of the matrix formed by replacing the y-column with the constants
determinant of the matrix formed by replacing the z-column with the constants

If $D \neq 0$, then $x=\frac{D_{x}}{D}, y=\frac{D_{y}}{D}, z=\frac{D_{z}}{D}$; the solution to the system of equations is the ordered triple $\left(\frac{D_{x}}{D}, \frac{D_{y}}{D}, \frac{D_{z}}{D}\right)$.
(Note: If $D=0$, Cramer's Rule does not apply-use a different method to solve the system of equations).
Ex. Solve the system of equations using Cramer's Rule, if applicable. $\left\{\begin{array}{c}2 x+3 y-z=-12 \\ x-y-z=-4 \\ -4 x+3 y+z=14\end{array}\right.$
Find the value of each determinant D, D_{x}, D_{y} and D_{z}.

$$
\begin{aligned}
D=\left|\begin{array}{ccc}
2 & 3 & -1 \\
1 & -1 & -1 \\
-4 & 3 & 1
\end{array}\right|= & 2\left|\begin{array}{cc}
-1 & -1 \\
3 & 1
\end{array}\right|-1\left|\begin{array}{cc}
3 & -1 \\
3 & 1
\end{array}\right|-4\left|\begin{array}{cc}
3 & -1 \\
-1 & -1
\end{array}\right| \\
& =2(-1+3)-1(3+3)-4(-3-1) \\
& =2(2)-1(6)-4(-4) \\
& =14
\end{aligned}
$$

$$
D_{x}=\left|\begin{array}{ccc}
-12 & 3 & -1 \\
-4 & -1 & -1 \\
14 & 3 & 1
\end{array}\right|=-12\left|\begin{array}{cc}
-1 & -1 \\
3 & 1
\end{array}\right|+4\left|\begin{array}{cc}
3 & -1 \\
3 & 1
\end{array}\right|+14\left|\begin{array}{cc}
3 & -1 \\
-1 & -1
\end{array}\right|
$$

$$
=-12(-1+3)+4(3+3)+14(-3-1)
$$

$$
=-12(2)+4(6)+14(-4)
$$

$$
=-56
$$

$$
D_{y}=\left|\begin{array}{ccc}
2 & -12 & -1 \\
1 & -4 & -1 \\
-4 & 14 & 1
\end{array}\right|=2\left|\begin{array}{cc}
-4 & -1 \\
14 & 1
\end{array}\right|-1\left|\begin{array}{cc}
-12 & -1 \\
14 & 1
\end{array}\right|-4\left|\begin{array}{cc}
-12 & -1 \\
-4 & -1
\end{array}\right|
$$

$$
=2(-4+14)-1(-12+14)-4(12-4)
$$

$$
=2(10)-1(2)-4(8)
$$

$$
=-14
$$

$$
D_{z}=\left|\begin{array}{ccc}
2 & 3 & -12 \\
1 & -1 & -4 \\
-4 & 3 & 14
\end{array}\right|=2\left|\begin{array}{cc}
-1 & -4 \\
3 & 14
\end{array}\right|-1\left|\begin{array}{cc}
3 & -12 \\
3 & 14
\end{array}\right|-4\left|\begin{array}{cc}
3 & -12 \\
-1 & -4
\end{array}\right|
$$

$$
=2(-14+12)-1(42+36)-4(-12-12)
$$

$$
=2(-2)-1(78)-4(-24)
$$

$$
=14
$$

Thus, $x=\frac{D_{x}}{D}=\frac{-56}{14}=-4, \quad y=\frac{D_{y}}{D}=\frac{-14}{14}=-1$, and $z=\frac{D_{y}}{D}=\frac{14}{14}=1$.
The solution to the system of equations is the ordered triple $(-4,-1,1)$.

