TUTORINGCENTER

Completing the Square

For Algebra students

A trinomial that can factor to be a perfect square then it is called a perfect square trinomial.
Recall: $(x+d)^{2}=(x+d)(x+d)=x^{2}+2 d x+d^{2}$ Perfect Square Trinomial!
A quadratic expression has the general form: $a x^{2}+b x+c$. For the above trinomial $x^{2}+2 d x+d^{2}$, the leading coefficient is $1(a=1)$, the middle coefficient is $2 \mathrm{~d}(b=2 d)$, and the constant term is $d^{2}\left(c=d^{2}\right)$.

Relationship: The constant term c is "half of the middle term's coefficient and then squared."

$$
\left(\frac{1}{2} \cdot \boldsymbol{b}\right)^{2}=\left(\frac{1}{2} \cdot 2 d\right)^{2}=(d)^{2}=\boldsymbol{c}
$$

Ex: Find the c value that will make each trinomial a perfect square trinomial, then factor it.
(In other words...complete the square!)
a. $x^{2}+4 x+$ \square
b. $x^{2}-10 x+$ \square
c. $x^{2}+5 x+\square$

Solutions:

a. The " b "-value is 4 so we will take half of 4 and then square this entire value: $\left(\frac{1}{2} \cdot 4\right)^{2}=(2)^{2}=4$.

The perfect square trinomial is $x^{2}+4 x+4$ and factoring this trinomial we get: $x^{2}+4 x+4=(x+2)^{2}$.
b. The " b "-value is -10 so we will take half of -10 and then square this entire value: $\left(\frac{1}{2} \cdot-10\right)^{2}=(-5)^{2}=25$.

The perfect square trinomial is $x^{2}-10 x+25$ and factoring this trinomial we get: $x^{2}-10 x+25=(x-5)^{2}$.
c. The " b "-value is 5 so we will take half of 5 and then square this entire value: $\left(\frac{1}{2} \cdot 5\right)^{2}=\left(\frac{5}{2}\right)^{2}=\frac{25}{4}$. The perfect square trinomial is $x^{2}+5 x+\sqrt{\frac{25}{4}}$ and factoring this trinomial we get: $x^{2}+5 x+\frac{25}{4}=\left(x+\frac{5}{2}\right)^{2}$.
${ }^{* *}$ A COMPLETED SQUARE TRINOMIAL FACTORS IN A CERTAIN WAY: $x^{2}+b x+\left(\frac{1}{2} \cdot b\right)^{2}=\left(x+\left(\frac{1}{2} \cdot b\right)\right)^{2} * *$

Completing the square is often used to solve quadratic equations.

Solving Equations:

Ex. Solve the equation by completing the square: $x^{2}+6 x+2=0$
Step 1: $x^{2}+6 x=-2$

Step 2: $x^{2}+6 x+\ldots=-2+$
(leading coefficient is already 1)

Step 3: $x^{2}+6 x+9=-2+9$

$$
\left(\frac{1}{2} \cdot b\right)^{2}=\left(\frac{1}{2} \cdot 6\right)^{2}=(3)^{2}=9
$$

Step 4: $(x+3)^{2}=7$

Step 5: $x+3= \pm \sqrt{7}$

This is the completing the square part!

Ex. Solve the equation by completing the square: $3 x^{2}-15 x-21=0$
Step 1: $3 x^{2}-15 x=21$

Step 2: $x^{2}-5 x+\ldots=7+$ \qquad (divide every term by 3)

Step 3: $x^{2}+5 x+\frac{\mathbf{2 5}}{\mathbf{4}}=-2+\frac{\mathbf{2 5}}{4}\left(\frac{1}{2} \cdot b\right)^{2}=\left(\frac{1}{2} \cdot 5\right)^{2}=\left(\frac{5}{2}\right)^{2}=\frac{25}{4}$

Steps for Solving an Equation by

Completing the Square

Step 1: Move the constant " c " to the other side of the equationaway from terms with variables.

Step 2: If the leading coefficient is something other than 1 , then divide EVERYTHING by that number.

Step 3: Take half of the " b "-value (divide by 2) and then square it. Add that new number to both sides of the equation. Simplify the right-hand side of equation.

Step 4: Shrink (factor) the left side of the equation to $\left(x+\frac{b}{2}\right)^{2}$

Step 5: Square root both sides to get rid of the square. Remember to put a \pm on the right hand side.

Step 6: Get x by itself. Simplify your solution and we are done! Simplify, if possible!

Step 4: $\left(x+\frac{5}{2}\right)^{2}=\frac{17}{4}$

Step 5: $\quad x+\frac{5}{2}= \pm \sqrt{\frac{17}{4}}$

Step 6: $x=-\frac{5}{2} \pm \frac{\sqrt{17}}{2}$

$$
x=-\frac{5}{2}+\frac{\sqrt{17}}{2}
$$

$x=-\frac{5}{2}-\frac{\sqrt{17}}{2}$

