Completing the Square

For Algebra students

A trinomial that can *factor* to be a perfect square then it is called a **perfect square trinomial**.

Recall:
$$(x + d)^2 = (x + d)(x + d) = x^2 + 2dx + d^2$$
 Perfect Square Trinomial!

A quadratic expression has the general form: $ax^2 + bx + c$. For the above trinomial $x^2 + 2dx + d^2$, the leading coefficient is 1 (a = 1), the middle coefficient is 2d (b = 2d), and the constant term is d^2 ($c = d^2$).

Relationship: The constant term c is "half of the middle term's coefficient and then squared."

$$\left(\frac{1}{2} \cdot \boldsymbol{b}\right)^2 = \left(\frac{1}{2} \cdot 2d\right)^2 = (d)^2 = \boldsymbol{c}$$

Ex: Find the *c* value that will make each trinomial a perfect square trinomial, then factor it.

b. $x^2 - 10x +$

(In other words...complete the square!)

a. $x^2 + 4x +$ _____

RAFTON

TUTORING CENTER

Ο

С

Solutions:

- a. The "b"-value is 4 so we will take half of 4 and then square this entire value: $(\frac{1}{2} \cdot 4)^2 = (2)^2 = 4$. The perfect square trinomial is $x^2 + 4x + 4$ and factoring this trinomial we get: $x^2 + 4x + 4 = (x + 2)^2$.
- b. The "b"-value is -10 so we will take half of -10 and then square this entire value: $\left(\frac{1}{2} \cdot -10\right)^2 = (-5)^2 = 25$. The perfect square trinomial is $x^2 - 10x + 25$ and factoring this trinomial we get: $x^2 - 10x + 25 = (x - 5)^2$.
- c. The "b"-value is 5 so we will take half of 5 and then square this entire value: $\left(\frac{1}{2} \cdot 5\right)^2 = \left(\frac{5}{2}\right)^2 = \frac{25}{4}$. The perfect square trinomial is $x^2 + 5x + \frac{25}{4}$ and factoring this trinomial we get: $x^2 + 5x + \frac{25}{4} = \left(x + \frac{5}{2}\right)^2$.

**A COMPLETED SQUARE TRINOMIAL FACTORS IN A CERTAIN WAY: $x^2 + bx + (\frac{1}{2} \cdot b)^2 = (x + (\frac{1}{2} \cdot b))^2 **$

Crafton Hills College Tutoring Center Created: November 2017 Completing the Square

Completing the square is often used to solve quadratic equations.

Solving Equations:

Ex. Solve the equation by completing the square: $x^2 + 6x + 2 = 0$

Step 1: $x^2 + 6x = -2$

Step 2: $x^2 + 6x + = -2 +$

(leading coefficient is already 1)

This is the

square part!

completing the

9 = -2 + **9**
$$\left(\frac{1}{2} \cdot b\right)^2 = \left(\frac{1}{2} \cdot 6\right)^2 = (3)^2 = 9$$

Step 4: $(x + 3)^2 = 7$

Step 3: $x^2 + 6x +$

Step 5: $x + 3 = \pm \sqrt{7}$

Step 6:
$$x = -3 \pm \sqrt{7}$$

 $x = -3 - \sqrt{7}$

Ex. Solve the equation by completing the square: $3x^2 - 15x - 21 = 0$

(<mark>d</mark>ivide every term by 3)

Step 1: $3x^2 - 15x = 21$

Step 2: $x^2 - 5x + _ = 7 + _$

Step 3: $x^2 + 5x + \frac{25}{4} = -2 + \frac{25}{4} \left(\frac{1}{2} \cdot b \right)^2 = \left(\frac{1}{2} \cdot 5 \right)^2$

Step 4: $\left(x + \frac{5}{2}\right)^2 = \frac{17}{4}$

Step 5:
$$x + \frac{5}{2} = \pm \sqrt{\frac{17}{4}}$$

Step 6: $x = -\frac{5}{2} \pm \frac{\sqrt{17}}{2}$
 $x = -\frac{5}{2} - \frac{\sqrt{17}}{2}$
 $x = -\frac{5}{2} - \frac{\sqrt{17}}{2}$

Crafton Hills College Tutoring Center Created: November 2017 Equation by Completing the Square Step 1: Move the constant "c" to the

Steps for Solving an

- Step 1: Move the constant "c" to the other side of the equation— away from terms with variables.
- **Step 2:** If the leading coefficient is something other than 1, then divide EVERYTHING by that number.
- **Step 3:** Take half of the "b"-value (divide by 2) and then square it. Add that new number to both sides of the equation. Simplify the right-hand side of equation.
- **Step 4:** Shrink (factor) the left side of the equation to $\left(x + \frac{b}{2}\right)^2$
- **Step 5:** Square root both sides to get rid of the square. Remember to put a \pm on the right hand side.
- Step 6: Get x by itself. Simplify your solution and we are done! Simplify, if possible!

Completing the Square