

Chapter 5 Normal Probability Distributions

	Continuous Prob. Dist. 5.1 & 5.2	Finding Values 5.3	Sample Mean, \overline{x} 5.4	Proportion, \widehat{p}
Guidelines	 Stated that distribution is normal or approximately normal. The normal curve is bell-shaped and is symmetric about the mean. The mean, median, and mode are equal. <u>Std. Norm. Dist</u>.: μ = 0; σ = 1; Total Area Under Cure = 1 		 Stated that the calculation is determining the distribution of the sample mean. sample size must be large enough (n ≥ 30) 	1. The sample size is less than or equal to 5% of the population size: $(n \le 0.05N)$ 2.Normally distributed
Formulas	$z = \frac{(x - \mu)}{\sigma}$ =STANDARDIZE(<i>x</i> , <i>mean</i> , <i>standard_dev</i>)	Transforming a z-score to an x value: $x = \mu + z\sigma$	$z = \frac{(\bar{x} - \mu_{\bar{x}})}{\sigma_{\bar{x}}}$	$z = \frac{(\hat{p} - \mu_{\hat{p}})}{\sigma_{\hat{p}}}$
Excel	Area to the Left (Less than):=NORM.DIST($x, \mu, \sigma, TRUE$)Area to the Right (More than):=1-NORM.DIST($x, \mu, \sigma, TRUE$)Finding the Probability Given a z-Score/ Find the Shaded Area Under the Curve:=NORM.S.DIST(z-score, TRUE)	Area to the Left (Below): =NORM.INV(p,μ,σ) Area to the Right (Above): =NORM.INV((1-p),μ,σ) Finding Z-score given the Probability/ Percentile: =NORM.S.INV(probability)	Area to the Left: =NORM.DIST($\bar{x}, \mu, \sigma_{\bar{x}}$,TRUE) Area to the Right: =1-NORM.DIST($\bar{x}, \mu, \sigma_{\bar{x}}$,TRUE)	
Mean	If not given: $oldsymbol{\mu}=oldsymbol{0}$	$\mu = n \cdot p$	$\mu_{\overline{x}} = \mu$	$\mu_{\widehat{p}} = p$
Variance		$\sigma^2 = n \cdot p \cdot q$	$\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n}$	$\sigma_{\overline{p}}^2 = \frac{p(1-p)}{n}$
Standard Deviation	If not given: $\pmb{\sigma}=\pmb{1}$	$\boldsymbol{\sigma} = \sqrt{n \cdot p \cdot q}$	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$	$\boldsymbol{\sigma}_{\widehat{\boldsymbol{p}}} = \sqrt{\frac{p(1-p)}{n}}$