Chapter 5 Normal Probability Distributions

	Continuous Prob. Dist. 5.1 \& 5.2	Finding Values 5.3	Sample Mean, $\bar{x} 5.4$	Proportion, $\widehat{\boldsymbol{p}}$
Guidelines	1. Stated that distribution is normal or approximately normal. 2.The normal curve is bell-shaped and is symmetric about the mean. 3.The mean, median, and mode are equal. Std. Norm. Dist.: $\boldsymbol{\mu}=0 ; \boldsymbol{\sigma}=1$; Total Area Under Cure = 1		1. Stated that the calculation is determining the distribution of the sample mean. 2. sample size must be large enough ($n \geq 30$)	1. The sample size is less than or equal to 5% of the population size: $(n \leq 0.05 N)$ 2.Normally distributed
Formulas	$\begin{gathered} Z=\frac{(x-\mu)}{\sigma} \\ =\operatorname{STANDARDIZE}(x, \text { mean,standard_dev }) \end{gathered}$	Transforming a z-score to an x value: $x=\mu+z \sigma$	$z=\frac{\left(\bar{x}-\mu_{\bar{x}}\right)}{\sigma_{\bar{x}}}$	$z=\frac{\left(\hat{p}-\mu_{\hat{p}}\right)}{\sigma_{\hat{p}}}$
Excel	Area to the Left (Less than): $=\operatorname{NORM} . \operatorname{DIST}(x, \mu, \sigma, \text { TRUE })$ Area to the Right (More than): $=1-\mathrm{NORM} . \operatorname{DIST}(x, \mu, \sigma, \text { TRUE })$ Finding the Probability Given a z-Score/ Find the Shaded Area Under the Curve: =NORM.S.DIST(z-score,TRUE)	Area to the Left (Below): $=\operatorname{NORM} \cdot \operatorname{INV}(p, \mu, \sigma)$ Area to the Right (Above): $=\operatorname{NORM} . \operatorname{INV}((1-p), \mu, \sigma)$ Finding Z-score given the Probability/ Percentile:	Area to the Left: $=\operatorname{NORM} . \operatorname{DIST}\left(\bar{x}, \mu, \sigma_{\bar{x}}\right.$, TRUE $)$ Area to the Right: $=1-\mathrm{NORM} . \operatorname{DIST}\left(\bar{x}, \mu, \sigma_{\bar{x}}\right.$, TRUE $)$	
Mean	If not given: $\boldsymbol{\mu}=\mathbf{0}$	$\boldsymbol{\mu}=n \cdot p$	$\boldsymbol{\mu}_{\overline{\boldsymbol{x}}}=\mu$	$\boldsymbol{\mu}_{\widehat{\boldsymbol{p}}}=p$
Variance		$\boldsymbol{\sigma}^{2}=n \cdot p \cdot q$	$\boldsymbol{\sigma}_{\bar{x}}^{\mathbf{2}}=\frac{\sigma^{2}}{n}$	$\boldsymbol{\sigma}_{\hat{\hat{\boldsymbol{p}}}}^{2}=\frac{p(1-p)}{n}$
Standard Deviation	If not given: $\sigma=1$	$\boldsymbol{\sigma}=\sqrt{n \cdot p \cdot q}$	$\boldsymbol{\sigma}_{\overline{\boldsymbol{x}}}=\frac{\sigma}{\sqrt{n}}$	$\boldsymbol{\sigma}_{\widehat{\boldsymbol{p}}}=\sqrt{\frac{p(1-p)}{n}}$

