Chapter 4 Probability Distributions

Chapter 4.2 The Binomial Probability Distribution

Checks:				
1. Fixed number of trials, where each trial is independent of the other. 2. Only two possible outcomes (success (s) and fail (f)			3. Probability of success is the same for each trial. 4. The random variable x counts the \# of successful trials.	
Word Phrases:	Math Symbols:	Excel Commands:		Examples:
```"Exactly," "Equal," "Is"```	$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	=BINOM.DIST(x, $n, p$, false)		$\begin{gathered} P(X=5) \\ =\text { BINOM.DIST(5, } n, p, \text { false }) \end{gathered}$
"Between"	$\boldsymbol{P}(\boldsymbol{a} \leq \boldsymbol{X} \leq \boldsymbol{b})$	=BINOM.DIST(Larger $x, n, p$, true)   - BINOM.DIST(Smaller $x-1, n, p$, true)		$P(5 \leq X \leq 7)$   $=$ BINOM.DIST(7, $n, p$, true $)$   - BINOM.DIST(4, $n, p$, true)
"No more than," "At most"	$\boldsymbol{P}(\boldsymbol{X} \leq x)$	$=$ BINOM.DIST( $x, n, p$, true $)$		$\begin{gathered} P(X \leq 5) \\ =\text { BINOM.DIST(5, n, p, true }) \end{gathered}$
"Fewer than," "Less than"	$\boldsymbol{P}(\boldsymbol{X}<\boldsymbol{x})$	$=$ BINOM.DIST( $x-1, n, p$, true $)$		$\begin{gathered} P(X<\mathbf{5}) \\ =\text { BINOM.DIST }(4, n, p, \text { true }) \end{gathered}$
"At least," "No less than"	$P(X \geq x)$	$=1-\operatorname{BINOM.DIST}(x-1, n, p$, true $)$		$\begin{gathered} P(X \geq 5) \\ =1-\text { BINOM.DIST(4, n, } p \text {, true }) \end{gathered}$
"More than," "Greater than"	$\boldsymbol{P}(\boldsymbol{X}>\boldsymbol{x})$	$=1-\operatorname{BINOM} . \operatorname{DIST}(x, n, p$, true $)$		$\begin{gathered} P(X>5) \\ =1-\text { BINOM.DIST(5, n, p, true }) \end{gathered}$
Mean	$\boldsymbol{\mu}=n \cdot p$	Notations:		Formula:
Variance	$\boldsymbol{\sigma}^{2}=n \cdot p \cdot q$	$n=$ The total number of trials   $p=$ The probability of success in a single trial   $q=$ The probability of failure in a single trial   $x=$ Represents the \# of successes in $n$ trials   $q=1-p \quad$ False $=0 \quad$ True $=1$		$P(x)={ }_{n} C_{x} p^{x}(1-x)^{n-x}=\frac{n!}{(n-x)!x!} p^{x} q^{n-x}$
Standard Deviation	$\boldsymbol{\sigma}=\sqrt{n \cdot p \cdot q}$			

