

Chapter 3: Probability

Probability Requirements						Notation
• The probability of event <i>E</i> must be between 0 and 1, inclusive.						0 < P(F) < 1
• The sum of the probabilities of all outcomes in a sample must equal to 1 or 100%.						$0 \leq I(E) \leq 1$
Complimentary Events 3.1						
P(E') = 1 - P($P(At \ least \ one \ of \ "A") = 1 - P(None \ of \ "A")$					
Multiplication Rule-AND 3.2						
$P(A \text{ and } B) = P(A) \cdot P(B)$			(A and B are independent)			
$P(A \text{ and } B) = P(A) \cdot P(B A)$			(A and B are dependent)			
Additional Rule - OR 3.3						
P(A or B) = P(A) + P(B)			(A and B are mutually exclusive)			
P(A or B) = P(A) + P(B) - P(A and B)			(A and B are NOT mutually exclusive)			
Classical Approach	E	Empirical/Statistical		Conditional	Probability	Independence Rule
$P(E) = \frac{\# of outcomes in even E}{Total sample size}$		$P(E) = \frac{Frequency of Event E}{Total frequency}$				P(A B) = P(A)
	P(E)			$P(A B) = \frac{P(A B)}{P(A B)}$	$\frac{P(A \text{ and } B)}{P(B)}$	OR When
						P(B A) = P(B)
		$=\frac{J}{n}$				
Counting Techniques 3.4						
Permutation (Order Matters):			Combination (Order Does Not Matter):			
$_{n}P_{r} = \frac{n!}{\langle \cdot \cdot \cdot \rangle}$			$_{n}C_{r} = \frac{n!}{\langle \cdot \cdot \cdot \rangle}$			
(n-r)!			(n-r)!r!			
= PERMUT (n,r)			= COMBIN (n,r)			
Distinct Items (Multiplication Principle of Counting):			Permutation (Distinguishable):			
			$\frac{n!}{n_1! n_2! \dots n_k!}$			
XXX						
Multiply all the possible outcomes			Where: $n = n_1 + n_2 + n_3 + \dots + n_k$			
			Permutations of <i>n</i> objects where n_1 are one type, n_2 are			
n = Sample Size/Total # of Items P = Permuta		tion $P(x) = Prob$		ability of		
r = # of objects chosen		n [*] r ⁻ r crinuta			$P(A B) = Probability of \Delta given B$	
$nC_r = Combina$		ition	$\mathbf{D}(\mathbf{D} \mathbf{A}) = \operatorname{Probability} \mathbf{C}$			
$\kappa = 1, 2, 3$ items ! = Factorial				P(B A) = Pr	obability of B given A	