

Chapter 2: Descriptive Statistics

Non-Grouped Data 2.2 & 2.3							Grouped Data 2.2 & 2.3				
Sample Mean:			Population Mean:				Class Width:				
$\bar{x} = \frac{\sum x}{n}$ = AVGERAGE (DATA)			$\mu = \frac{\sum x}{N}$ $= AVGERAGE(DATA)$				$=\frac{Range \ of \ Data}{Number \ of \ Classes}$				
Sample Standard Deviation:			Population Standard Deviation:				Relative Frequency:				
$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$ $= \text{STDEV.S(DATA)}$			σ = =\$1	$\int \frac{\sum(x)}{ \mathbf{F} ^2} d\mathbf{r} d\mathbf{r} d\mathbf{r}$	$\frac{(-\mu)^2}{N}$ P(DATA)		$= \frac{Class\ frequency}{Total\ of\ Frequency}$ Round up Rule 1				
Sample Variance:			Population Variance:				Midpoint of Class:				
$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$ $= VAR.S(DATA)$			σ ² =\	$=\frac{\sum(x)}{\sqrt{2}}$	$\frac{(Low)^2}{N} = \frac{(Low)}{(Low)}$			Lower Cl	wer Class Limit + Upper Class Limit) 2		
Grouped Data (Frequency Distribution Table) 2.3											
Frequency of Sample Mean:			$\overline{\mathbf{x}} = \frac{\sum xf}{\sum f}$		Frequency of Population			n Mean:	$\mu = \frac{\sum xf}{\sum f}$		
Sample Standard Deviation:		s =	$\boldsymbol{s} = \sqrt{\frac{\sum (x - \bar{x})^2 f}{(\sum f) - 1}}$		Population Standard Dev			viation:	$\boldsymbol{\sigma} = \sqrt{\frac{\sum (x-\mu)^2 f}{\sum f}}$		
Sample Variance:		<i>s</i> ²	$s^2 = \frac{\sum (x - \bar{x})^2 f}{(\sum f) - 1}$		Population Variance:					$\sigma^2 = \frac{\sum (x-\mu)^2 f}{\sum f}$	
Measures of Variatio			n 2.4				Box & Plots 2.5				
Weighted Mean:			$\bar{x}_w = \frac{\sum wx}{\sum w}$		Range: Quartiles:) = =(= (Maximum data entry – Minimum data entry)=QUARTILE.INC(HIGHLIGHT DATA,0),1),2),3),4)				
Coefficient Variation:		($CV\frac{s}{\bar{x}}$ · 100%		Interquartile Range (IQR):			R):	$IQR = Q_3 - Q_1$		
Measures of Position 2.5											
Chebyshev's Inequality:	$\left(1-\frac{1}{k^2}\right) \times 1$.00%		Percentile of <i>x</i>			Lowe	er Fence:	$= Q_1 - 1.5(IQR)$	
	k = 2 : 75% & k = 3 : 88.9%		3 : 88.9%	_ _ # of data less thar			x . 10	Uppe	er Fence:	$= \mathbf{Q}_3 + 1.5(\mathbf{IQR})$	
Sample Z – Score:	$z = \frac{x - \bar{x}}{s}$ =STANDARDIZE(x, \bar{x}, s)		$\frac{\bar{x}}{\bar{x}}$ E(x, \bar{x} ,s)	=			-· 10	Population Z–Score:		$z = \frac{x - \mu}{\sigma}$ =STANDARDIZE(x, \mu, \sigma)	
NOTATIONS											
 x = Class Midpoint n = Sample Size; Sum of frequency N = Population Size f = Frequency w = Weight (hours, units, pounds) k = Number of Standard Deviation Σ = Summation Sum of 			\overline{x} = Sample Mean μ = Population Mean s = Sample Standard Deviation σ = Population Standard Deviation s^2 = Sample Variance σ^2 = Population Variance Bound Lin Bule = round up to pearect who				Q_0 = Minimum ,0 in formula Q_1 = Quartile 1 (25 th percentile) ,1 in formula Q_2 = Quartile 2/ Medium (50 th percentile) ,2 in formula Q_3 = Quartile 3 (75 th percentile) ,3 in formula Q_4 = Maximum ,4 in formula Z = z - score				