

Conditions for Series Convergence and Divergence

Calculus Students

Depending on the form of the series, the following rules can be used to test special series for convergence or divergence. *

Series/Test	Form of Series	Condition for convergence	Condition for divergence	Comments
Geometric Series	$\sum\nolimits_{k=0}^{\infty} ar^k$	r < 1	$ r \ge 1$	If $ r < 1$, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$
Divergence Test	$\sum\nolimits_{k=1}^{\infty}a_{k}$	Not Applicable	$\lim_{k\to\infty}a_k\neq 0$	Cannot be used to prove convergence
Integral Test	$\sum_{k=1}^{\infty} a_k \text{ where}$ $a_k = f(k)$ and f is continuous, $positive, and decreasing$	$\int_{1}^{\infty} f(x)dx < \infty$	$\int_{1}^{\infty} f(x)dx = \infty$	The value of the integral is not the value of the series
p-series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	p > 1	$p \le 1$	Can often relate other series to this one (Comparison Tests)
Ratio Test	$\sum\nolimits_{k=1}^{\infty} a_k \text{ where } a_k > 0$	$\lim_{k\to\infty} \frac{a_{k+1}}{a_k} < 1$	$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} > 1$	Inconclusive if the limit = 1
Root Test	$\sum\nolimits_{k=1}^{\infty}a_{k}\text{ where }a_{k}\geq0$	$\lim_{k\to\infty} \sqrt[k]{a_k} < 1$	$\lim_{k\to\infty} \sqrt[k]{a_k} > 1$	Inconclusive if the limit = 1
Comparison Test	$\sum\nolimits_{k=1}^{\infty}a_{k}\text{ where }a_{k}>0$	$0 < a_k \le b_k \text{ and }$ $\sum_{k=1}^{\infty} b_k \text{ converges}$	$0 < b_k \le a_k \text{ and }$ $\sum_{k=1}^{\infty} b_k \text{ diverges}$	Must generate the series for b _k
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k$ where $a_k > 0$, $b_k > 0$	$0 \le \lim_{k \to \infty} \frac{a_k}{b_k} < \infty \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ converges}$	$\lim_{k \to \infty} \frac{a_k}{b_k} > 0 \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ diverges}$	Must generate the series for b _k
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^k a_k, where$ $a_k > 0 \text{ and } 0 < a_{k+1} \le a_k$	$\lim_{k\to\infty}a_k=0$	$\lim_{k\to\infty}a_k\neq 0$	The remainder: $ R_n < a_{n+1}$
Absolute Convergence	$\sum\nolimits_{k=1}^{\infty}a_{k}$	$\sum\nolimits_{k=1}^{\infty} a_k \ converges$		Applies to arbitrary series

*Adapted from: Briggs, Cochran, Calculus: Early Transcendentals 2nd Edition

Updated: April 2017