Oceanography Chapter 16: Marine Communities

Community: comprised of the many populations of organisms that interact at a particular location.

Population: group of organisms of the same species that occupy a specific area.

Communities/Populations depend on the biological and physical characteristics of the living space.

Largest community (Deep Ocean) is the most sparsely populated.

Small community - a rock

Microscope communities also exist.

Organisms Within Communities

Habitat – its physical address or location Niche – occupation within the habitat Range of species – biodiversity

Influence of Physical and Biological Factors

- >determine the location and composition of a community
- >Physical Factors: T, P, and Salinity
- >Biological Factors: crowding, predation, grazing, parasitism, shading from light, generation of waste substances, competition for limited oxygen

Stenothermal – narrow temperature range Eurythermal – can function in a wide range

Stenohaline – require stable haline environment Euryhaline – can withstand a wide range.

Combination of effects may prove lethal

Ecology: study of the balance between physical and biological factors and how they relate to community success and longevity.

Competition

- > Can be between the same population or different ones
- ➤ Subtle changes in factors can swing favor to one organism over another (Barnacles, Limpets)
- ➤ Same species larger, stronger, getting food, mating, avoiding enemies

Growth Rate and Carrying Capacity

- ➤ With no competition growth rates are exponential
- ➤ Most have environmental resistance some sort of limiting factor.
- > Carrying Capacity- number of organisms in an environment

Distribution of Organisms

Population Density: number of individuals per unit area (or volume).

Random Distribution – the position of one organism in a community in no way influences the position of other organisms

➤ Also implies conditions are uniform.

Figure 16.5

Clumped Distribution – most common

➤ Where conditions are optimal for physical protection, nutrient concentration, initial dispersal, social interaction

Uniform Distribution – rarest

Eels come close

Change in Marine Communities

Communities can alter their own environment Coral Reefs ⇒ currents, temp, dissolved gases

Natural catastrophes can alter communities.

Human activities can.

Climax Community: stable, long-established community

Succession: reestablishment of a climax community

Examples of Marine Communities

- 1. Rocky Intertidal Communities (Figure 16.6)
 - ➤ Band between the highest high tide and lowest low tide marks
 - ➤ Wave shock the powerful force of crashing wave.
 - ➤ Can be extreme (with rise/fill of the tides)

(Critters are adapted)

Exposure Figure 16.7

Motile vs. Sessile Crabs Clams

Desiccation occurs – drying

- 2. Seaweed Communities (Figure 16.8)
 - Urchins like them
 - > Others will eat urchins
- 3. Sand Beach/Cobble Beach
 - > Actually high energy (Sand is tough)
 - ➤ Cobble higher energy
 - ➤ Basalt hot!
 - > Sand beach critters

Figure 16.9

- 4. Salt Marshes /Estuaries
 - Brackish to Saltwater
 - Estuary broad, shallow river mouth
 - > Critters are euryhaline
 - ➤ Lots of juveniles
- 5. Coral Reefs
 - Medium to High energy environment, but stable
 - ➤ Warm water
 - > 50% biomass

Figure 16.12

- 6. Open Ocean
 - ➤ 83% Biomass, uppermost 200m (660 feet)
 - Less than 1% us found below 3000m (10k ft) (Photosynthesis)
 - ➤ Deep Sea Scattering layer (DSL)
 - 1. Migrate up/down with light Figure 16.13
 - 2. Found with Echo sounding
 - 3. Found in all ocean areas but the Artic
 - ➤ Deeper water is "patchy"

(And Bizarre - Gulper Eels (Figure 16.15)

- Angler Fish (Figure 16.16)

- 7. Deep Sea Floor
 - > slow metabolism: cold water
 - ➤ Live long lives
 - Very specialized for their environment
 Tripod Fish 16.17
 Other Bizarres 16.18
- 8. Deep Rock Communities
 - Extremophiles stand very high temperatures.
 - ➤ Chemosynthethic (below Photic Zone)
 - 1. Use Fe, Ma, SO_4 to generate methane from CO_2 (than build sugar molecules = Energy)
 - ➤ Some scientist think 30 % biomass
 - ➤ Slimes Subsurface Lithoautotrophic Microbial Ecosystems
- 9. Hydro thermal Vent and Cold Seep Communities
 - Near MOR
 - \triangleright Chemosynthetic, using H₂S, CO₂, O₂ to make food
 - ➤ Huge ecosystem, from bacteria to higher level heterotrophs
 - > Crabs, clams, sea anemones, shrimps
 - ➤ "Tube Worms" Pogonophorans
 - > Critters shelter bacteria
 - ➤ Cold Seeps hypersaline cold water rich in nutrients
 - Base of chemo synthetic bacteria

10. Whale Fall Communities

> May be the recruiters

Symbiosis: Co-occurrence - dependance

- 1. Mutualistic both benefit
- 2. Commensialism one benefits
- 3. Parasitism one benefits, but harms the other