Oceanography Chapter 14

Plankton – Ocean wanderers

- Drift or swim weakly (Wekton – swimmers)
- > Describes a lifestyle
- > Contains members from many different animal groups

First study – Germans in 1925 - 26 (Meteor)

- ➤ Plankton nets (Figure 14.2)
- > Smaller ones captured by fine filters

Phytoplankton-Autotrophs

- ➤ 35 billion metric tons of C converted to sugars every year 40 % of food made by photosynthesis on Earth
- ➤ At least 8 types
- 1. Diatoms- began to dominate in K, 100 MYA
 - > Increased proportion of free oxygen in the atmosphere
 - ➤ Figure 14.3
 - ➤ Dia (through) tomos (to cut)
 - Frustule- cell wall consists of silica
 - ➤ Cell wall consists of 2 valves
 - > 55% of the energy of sunlight absorbed can be converted to carbs
 - \triangleright Excess O_2 is released through frustule
 - ➤ Xanthophylls yellow or brown pigment
 - ➤ Chlorophyll main photosynthetic pigment
 - > Store energy as fatty acids and oils, which are lighter than water helps them float
 - ➤ Some don't float benthic always enough to or pennate in shape.
 - ➤ Reproduce by dividing in half (may be as fast as a few days) actually get smaller with cell division, since they become too glassy after several divisions, they develop auxospores (naked cell)
 - ➤ Diatoms die skeletons form ooze diatomite

2. Dinoflagellates – single celled autotrophs

- ➤ Majority live in the open ocean, but a few live within the tissues of other critters (zooxanthellac)
- ➤ Flagella whip-like, and have two rotate and move
- ➤ Widely distributed solitary critters that reproduce by simple fusion.
- ➤ Some are bioluminescent use energy from a reaction to make light energy (may have evolved from an intrusion alarm)
- ➤ Usually responsible for red tides (HAB)
 (Spring time 6-8 million parts per liter or 23 to 29 parts/gallon)
 Box 14.1

3. Coccolithophores

- ➤ Small single celled autotrophs covered with disks of CaCO₃ (coccoliths) fixed to the outside of their cell walls
- > Fig 14.6
- > Sargasso, Mediterranean Sea
- ➤ Water will be milky or chalky
- ➤ Hence produce chalk Cliffs of Dover in England

4. Silicoflagellates

- ➤ Internal support is silica (like diatoms)
- ➤ 1 or 2 flagella
- > seem more primitive didn't know much

5. Picoplankton – pico 1 trillionth

- Not much known
- ➤ Including cyanobacteria and other bacteria
- > Smaller scale

1980s – discovered viruses – no metabolism

Bacteriophages

Phycophages

Measuring Primary Productivity

Rate of Production =
$$\frac{(R_L - R_P) \times M}{R \times t}$$

 R_L = radio active count in "Light" sample

 $R_P = count$ in the dark sample

M = total mass

T = number of hours of incubation

Use radio active ¹⁴C

Several ways to do it: Light dark variety Figure 14.7

Factors That Limit Productivity

- 1. Availability of Nutrients
 - a. Non conservative nutrients change in concentration with biological activity.
 - ➤ Plankton Bloom rapid phytoplankton growth
 - ➤ Big Blooms upwelling zones Antarctica
- 2. Availability of light
 - > Too much or too little effects productivity

Figure 14.8

Compensation Depth – Production of carbohydrates and oxygen by photosynthesis through a day's time will exactly equal the consumption of carbs and oxygen by respiration

- Corresponds to the depth to which about 1% of surface light penetrates (bottom of the euphotic zone)
- ➤ Changes with sun angle, turbidity, surface turbulence, etc

Global distribution of Plankton /Productivity

- > Distribution of phytoplankton corresponds to the distribution of macronutrients.
- ➤ Because of coastal upwelling and land runoff, nutrient levels are highest near the continents.
- > Productivity is highest there
- 1. Tropics
 - > Deficient in surface nutrients
 - > Coral reefs are the exception
 - ➤ Dinoflagellates live within the tissues of corals
- 2. Polar Regions
 - > Spectacular plankton blooms during 24 hour days
 - > Arctic is lower
- 3. Temperate and Subpolar Zones
 - ightharpoonup Temperate Pro 120 gC/m²/yr
 - Subpolar 250 gC/m²/yr

Greatest open ocean – Ekmin transport upwelling along Equator

Phytoplankton by season – Figure 14.10

Zooplankton – the Heterotrophs

➤ Heterotrophic – 10% of Phyto population

Most abundant (70%) – Copepods – shrimp-like

Biggest – Cyanea – 12 foot dome jellyfish (Macro Plankton)

Holoplankton – spend their whole life in the plankton community

Meroplankton – temporary visitors – Juveniles

Zooplankton

Krill – Antarctic ecosystem (Fig 14.12)

Jellies – Fig 14.13

Forams (related to amoebas) (Fig 14.14) - CaCO₃ shells

 O_2 minimum zone below the well – lit surface zone

Larger Marine Producers

Autotrophs (Marine) are Algae

Algae – autotrophs possessing chlorophyll (P.S.), but lacking vessels to collect sap

- 1. Unicellular Diatoms, Dino Flag
- 2. Multicellular seaweed

Seaweed Structure – Figure 14.15 Blades (or Fronds) - leaves Stapes – stems Holdfast – root

Gas Bladder

<u>Thallus</u> – Body

1. Chlorophytes – Green algae

Figure 14.16

- > ancestor of green plants?
- 2. Phaephytes Brown algae
 - ➤ Kelp
 - > Fucoxanthin pigment
- 3. Rhodophytes Red algae Fig 14.17

Marine Angiosperms – flowers

- 1. Sea Grasses Figure 14.18
- 2. Mangroves Figure 14.19