Hydrologic Hazards of the Earth's Surface

2002 Eastern European Flooding along Danube

Geologic agents shape the Earth: rivers, mass wasting, glaciers, wind, underground water and waves >river flooding may be the most globally pervasive

Hydrology: science that deals with liquid and solid global water, its properties, circulation and distribution on Earth and in the atmosphere.

River Systems

A stream's ability to erode is a function of velocity and discharge

Factors important in river systems:

- 1) Velocity (V, in ft/sec)
- 2) Discharge (Q, in cfs or cubic feet per second)
- 3) Cross-sectional area

Increased discharge and velocity increase the stream's erosive potential.

Gradient: longitudinal profile of a stream channel

>expressed usually in feet per mile

>steepest gradients are near stream beginnings, shallowest near mouth

Base Level: lowest level to which a stream can erode

>typically near sea level

Floodplain: typically near base level. The flat area in the lower reaches of the river.

>Floodplains produce "bottom lands", productive clay and silt soils (due to slower velocities found near base level)

Stream Features

Alluvium: sediment deposited by running water

Alluvial Fans: sediment deposits found at the base of mountains above streams that open onto flat valley floors

Delta: similar to alluvial fans in shape and process, but in this case they streams open into a standing body of water, such as a lake or ocean

>Herodotus: used to describe them the greek letter delta

>Prone to coastal flooding, the most dangerous natural disaster

(500K dead in Bangladesh in 1970)

Meander: sinuous curve made by a river

>after Menderes River in Turkey

Point Bar: deposits produced on the inside of a meander

Meander Cutoffs and Oxbow Lakes: shortcut take by a river that cuts off a loop or meander

Natural Levees: sediments deposited on the flanks of a river

Artificial Levees: produced by us to control water flow

Levees of both types can protect cities.

>St. Louis, Johnstown

When There Is Too Much Water

Drainage Basin: the land area that contributes water to a particular stream or stream system

Drainage Divide: high point or ridge that separate drainage basins

Factors Determining Flooding:

- 1) intensity of rainfall
- 2) amount of prior rainfall
- 3) amount of snowmelt
- 4) Topography
- 5) Vegetation

Flash Floods: upland floods in moderate to high relief areas >typically fast and furious

Rivernine Floods: flood plains are inundated by rising waters

Hydrograph: graph of a water body's discharge >flooding is predictable to a degree

Flooding is the #1 loss of life

>coastal areas the greatest

>noncoastal are due to dam breaks

- 1) 1889 Johnstown Flood
- 2) 1928 St. Francis Dam

Flood Measurement

Large drainage basins have greater potential for huge floods >Just like faults!!!

Bank Full Stage: channel fills with water

Flood Stage: river water spills onto flood plain

Stage Hydrograph: relates steam discharge to river height (Figure 9.13)

Flood Frequency or Recurrence Interval

>How often on average a flood of a given magnitude can be expected in a particular location

Info needed: long term annual peak discharge (Q)

T (RI)=(N+1)/M Where: N=number of years of records

M=rank of event

If 100 years of records are available, the largest flood would be #1 or the "100 year flood".

>100 year event: 1% chance, 50 year even: 2% chance

>statistical probability: not an exact time table

>Use Figure 9.17 to predict building life: essentially a gamble

>human involvement and building can alter predictability, and so can climate change...

The Flood of 1993

>48% of rain ends up in the Mississippi River

>wet spring and a rainy July and August

>10-12 billion in damage

>broke record high water make in St. Louis July 19 (46 ft), July 20 (47.1 feet), and on August 1 (49.4 feet)

Mitigation Options

- 1) Dams: The Solution or the Problem
 - a. Lower 48: 75K dams
 - b. Now no longer make them
 - c. Dams slow water flow, increase sedimentation rates
 - d. Nowadays try to make dams ecologically better, especially for critters like spawning salmon
 - e. 1996 Federal Law: requires environmental concerns be addressed before relicensing of
 - f. Move has been to remove dams, but the bodies of water behind the dams have created their own ecosystems
- 2) Artificial Levees: The Solution or the Problem
 - a. Floodplain development in response to human construction has driven up property values
 - Many artificial levees were created to protect farmlands, but those farms were replaced by urban developments. Unfortunately the artificial levees were meant to protect the farms, not the urban areas
 - c. The buck gets passed, like in Johnstown
 - d. Artificial levees are thus self perpetuating
 - e. Floodwall construction inside artificial levee, as in near the old French Quarter of New Orleans
- 3) Insurance, Flood Proofing and Floodplain Management
 - a. National Flood Insurance Act of 1968 federally subsidized insurance protection in flood plain areas
 - b. 100 year flood level is the Regulatory Floodplain
 - c. Pre-1968 houses are protected
 - d. Always folks looking to take advantage

Methods of Flood Proofing

- 1) Raising structures above 100 year flood levels
- 2) Building walls and levees to resist floodwaters
- 3) Using water resistant building materials

Alluvial Fans can be difficult to manage

>Palm Springs and here, CA

Urbanization causes floods to peak sooner

- >100 year floods become 70 or 80 years
- >Johnstown
- >"Floods are an act of God. Floods damages result from acts of men."

When There Is Too Little Water

- >Southwest especially
- >2002 record drought
 - *Colorado River 85% lower (100 year low)
 - *Rio Grande did not reach the Gulf of Mexico
- >Water diversion and agricultural use are also part of the problem
- >PDO Pacific Decadal Oscillation (20-30 year interval)
 - *Not sure if it is real yet

Flood Facts and Flood Planning

- 1) Floods are the most consistently destructive natural hazards
- 2) Floods cannot be controlled completely, but can be mitigated somewhat
- 3) Flood-damage costs have been increasing at a rate of 5% annually
- 4) Urbanization increases flood peaks of small streams by 2 to 6 times
- 5) Use of the 100 year flood standard for regulation has been useful, but new research indicates climate change should be an included parameter
- 6) Do not drive through floodwaters! (figure 9.25)

Case Studies

- 9.1: The Nile River
 - >Measurement of Nile floods go back as far as 1750 B.C. (some say longer)
 - >Aswan High Dam changed things in 1970
 - >Schistosomiasos parasitic disease
 - >Shrimps left the delta area
- 9.2: Water, Water, Everywhere

>New Orleans - highest level of land 5ft (levee)

- 1) Average elevation: 1.3 ft
- 2) Lowest: drained wetlands 2 meters below sea level (Including French Quarter)
- 3) Subsidence from sediment and urbanization
- 9.3: Dams No Longer In
 - >Three Gorges Dam Vogue
 - >24 billion
 - >US the days of big dams are over
- 9.4: Rivers, Gorges and National Parks
 - >Yellowstone the first, 55th: Black Canyon National Park (2002)