Volcanoes

Flying through volcanic ash can be hazardous to your plane!

- ⇒ 1982 British Airways
- ⇒ 1989 KLM Boeing 247 from Alaskan Volcano
- ⇒ 1991 Mount Pinatubo
- ⇒ Since 1990 damage to at least 15 aircraft

Volcanoes are not all bad:

- 1) Esthetic beauty
- 2) Skiing and hiking
- 3) Soils can be productive

However, of course they can kill.

Who Should Worry?

In short – People who live on plate boundaries.

- ⇒ Most dangerous, convergent plate boundaries with subduction zones
- ⇒ 900/1350 volcanoes that have erupted are on the Pacific ring of fire (N.Z., Japan, Alaska, Mexico, C.A., Chile)
 - Mt. Erebus of Antarctica is the farthest south
- ⇒ Other famous: Mediterranean Vesuvius, Etna, Stromboli
 - Stromboli "Lighthouse of the Mediterranean"
- ⇒ Most active mild eruption of fluid lava, typically at Divergent Plate Boundaries
- \Rightarrow 2x more volcanoes north of the equator
 - Can affect world climate
 - Examples: Tamboru (1815), El Chichon (1982), Mt. Pinatubo (1991)
- ⇒ Us- no one east of New Mexico (Figure 5.2 &5.3) tectonics

Main mainland U.S. zone - Cascadia Subduction Zone

 \Rightarrow WA, OR, CA

"Alaska is the second most active volcanic region in the world, and Hawaii is not far behind."

Nature of the Problem

VEI – Volcanic Explosivity Index (Figures 5.4 & 5.5)

- ⇒ Related to volume of stuff erupted, height it rises, and duration of eruption
- ⇒ Mount St. Helens (1980) Explosive to Cataclysmic 4
- ⇒ VEI can increase with time
- ⇒ Magnitude and frequency Yellowstone (cataclysmic book)
- ⇒ Magma's viscosity is important
 - \blacksquare T\(\tau\), V\(\tau\) or T\(\tau\), V\(\tau\)
 - Silica: the more siliceous, the more viscous
 - Felsic vs. Mafic and the Andesite Line
 - Andesite Line: From Alaska to east of N.Z. by way of Japan and along the west coasts of N.A. and S.A.

<u>Types of Eruptions and Volcanic Cones</u>
"The type of volcanic eruption determines the shape of the structure or cone that is built, and by appearance alone, one can get an idea of a volcano's hazard potential."

Effusive Eruptions

- 1) Shield Volcanoes- built by gentle outpourings of low-silica fluid lavas
 - \Rightarrow Basaltic (mafic)
 - ⇒ Locations: Iceland, Galapagos, Hawaii
 - ⇒ Mauna Loa= 31,000 feet high from the bottom of the ocean
 - ⇒ Hawaii ("the big island") built by five volcanoes
 - Mauna Loa, Mauna Kea, Kilauea
 - ⇒ New islands to southeast: Loihi: ("the long one")
 - 1000 m below sea level
 - 1996-4300 earthquakes in one month
 - Reach surface sometime around 50,000 years from now
 - ⇒ Fissure eruptions occur commonly with these volcanoes Pu'u O'o
 - Has fed lava into the ocean since 1983, adding 500 acres
 - Destroyed 75 homes, black sand beach
 - Spectacular lava fountains 1,300 ft high (400 m)
 - Pele's hair and Pele's tears
- 2) Continental Flood Basalts
 - ⇒ Thick flat lying basalt flows
 - ⇒ Most famous: Columbia River Plain, Deccan Plateau (WA, OR, Idaho)
 - How? Superplume
 - ⇒ In scale, they cover many times the area of the large volcanoes
 - When deeply eroded, they form flat "treads" soft rock and vertical "rises" (hard rock)
 - Rocks are called traps, Swedish word for staircase (Deccan Traps, Siberian Traps)
 - ⇒ Deccan Traps (India)
 - 1-2 km thick (3,000-6,000 feet) and cover half a million Km²
 - Superplume may be linked to dinosaurs extinction
 - ⇒ Parana of Brazil matches with Etendeka of Namibia

Explosive Eruptions

- 1) Stratovolcanoes or Composite Cones
 - ⇒ Built of layers of both pyroclastic material and lava
 - ⇒ Strato: ash, cinders, lava
 - Upper steep slopes: pyroclastic volcanic ejecta
 - Lower slopes: alternating layers of lava and pyroclastics
 - ⇒ Mt. Vesuvius (Italy), Mt. Fujiyama (Japan), Mt. Hood (OR), Mt. Rainer (WA), Volcan Sea Constobal (Nicaragua)
 - ⇒ Continents contaminate magma
 - ⇒ Perhaps biggest threat to humans
 - ⇒ Can erupt the whole chamber, and form a caldera (Crater Lake, Long Valley Caldera, Valles Caldera, Yellowstone has several)

- 2) Lava Domes or Volcanic Domes
 - ⇒ Form when bulbous masses of lava pile up around the vent because the lava is too thick and viscous.
 - ⇒ Mono Craters
 - ⇒ Inside larger volcanoes- Mt. St. Helens
 - ⇒ Mount Lessen, Mammoth Mountain., Mount Delee
 - ⇒ Extrude very Felsic lavas rhyolite, or extrude glassy rocks like pumice or obsidian.

3) Cinder Cones

- ⇒ Smallest and most numerous
- ⇒ Built of pyroclastic materials tephra (Table 5.1)
 - Blocks, Bombs, Lapilli, Ash and Dust
- ⇒ Local: Amboy, Pisgah, Cima, Red Hill, 395
- ⇒ Paricutia: Mexico (1943-1952)
- ⇒ Generally "one-shot" events
- ⇒ Many are typically mafic

Benefits of Volcanic Action

- ⇒ Most of our atmosphere and hydrosphere came from volcanism
- \Rightarrow Typical volcanic gases: 80% H₂O (vapor), 10% CO₂, and the rest N₂ and rarer stuff (outgassing)
- ⇒ Dental Pumice or pumice stone
- ⇒ Light-weight bricks, cinder blocks, road foundation or décor stones
- ⇒ Red Paramounts (AZ, NM) contain basalt cinders
- ⇒ Obsidian- arrowheads and tools
- ⇒ Mountain recreation
- ⇒ Geothermal Energy- Iceland and Pacific Rim

Volcanic Hazards

Empedocles that ardent soul- Fell into Etna and was roasted whole!

- 1) Lava Flows
 - ⇒ Most hazards decrease in severity from their point of origin, not lava flows
 - ⇒ Basaltic Lava Flows
 - 1. Pahoehoe
 - 2 Aa
 - ⇒ Volcanic eruptions cannot be prevented, but can be diverted.

2) Ash Falls

- ⇒ Pliny the Elder (born A.D. 23) died in 79 A.D. from Vesuvius geology's first martyr
- ⇒ Plinian Column vertical plume of ash with a mushroom or anvil shaped head from the mountain summit
 - Can go as high as 10-15 miles (15-25 Km)
- \Rightarrow Katmai (1912) biggest one 20th
 - Acidic gases affected Seattle, WA
- ⇒ Ash fall from gravity closest to the cone, you're probably dead

3) Pyroclastic Flows

- ⇒ Turbulent mixtures of hot gasses and pyroclastic material that travel across the landscape with great velocity
- ⇒ Nuee Ardente "glowing cloud"
- ⇒ Mount Pelee two survivors (Martin, Que)
- ⇒ Mount Vesuvius Pompeii and Herculaneum (modern city Ercolano)
- ⇒ Welded Tuffs: from when pyroclastic flows harden from their own heat

4) Lohars (Indonesian word rood)

- ⇒ Fast moving volcanic debris flow
- ⇒ Nevado del Ruiz over 20,000
- ⇒ Potential is predictable: Mount Rainier

5) Tsunami

- ⇒ Are rare in association with volcanic activity
- ⇒ Most famous: Krakatoa (1883)
 - VEI: 6
 - 36K dead
 - Its eruption produced three islands: Krakatoa, Verlater, and Lang
 - New volcanic island has appeared

6) Weather and Climate

- ⇒ Ben Franklin is credited as the first person to connect volcanic eruptions with climate change
- ⇒ 1783 Iceland Laki Fissure
- ⇒ 1815 Tambora in Indonesia: "Year without a summer"
- ⇒ Volcanic dust residence time: 1-2 years
- \Rightarrow Dust veils (DUI) SO₂ produces white coatings on dust

7) Gases

- ⇒ Vog on Hawaii
 - SO₂: Can form sulfuric acid, which can kill plant life and destroy structures
 - Health Hazard?
- ⇒ CO₂ in Mammoth Mountain, CA
- \Rightarrow Cameroon, West Africa: say it is CO₂

Mitigation and Prediction

- 1) Diversion
 - ⇒ Damming and diversion and bombed?
 - ⇒ Iceland: Hermaey (1973)
 - ⇒ Etna (1992)

2) Volcano Hazards and Risk

- ⇒ Lava flow hazard zones depending on topography
- ⇒ Kilauea's erupted almost continuously since 1983

- 3) Eruption Forecasting
 - ⇒ VVO: Vesuvius Volcano Observatory (oldest 1845)
 - ⇒ HVO: Hawaiian Volcano Observatory
 - ⇒ AVO: Alaska Volcano Observatory
 - ⇒ Forecasters: Specific precursory warning sings
 - ⇒ However, volcanoes can change their behavior and even eruption style
 - ⇒ Tiltmeters and Ground Deformation Studies
 - ⇒ Volcanic earthquakes and volcanic tremors
 - ⇒ Gravimeters
 - ⇒ Satellite Inferometry
 - Help of GPS
 - ⇒ Volcanologists now have extra responsibility in dealing with politics
 - ⇒ Active vs. Dormant vs. Extinct
 - Active: Does not have to be erupting at the moment
 - Dormant: Not erupted in resent/living memory
 - Extinct: No further erupting many cinder cones

Case Study 5.1: New Zealand

Case Study 5.2: Mount Serrat, Paradise Coast

Case Study 5.3: CO₂, Earthquakes, and Hot Water Supply